Review Article A review of the evidence for the effects of total dietary fat, saturated, monounsaturated and n-6 polyunsaturated fatty acids on vascular function, endothelial progenitor cells and microparticles
نویسندگان
چکیده
Vascular dysfunction is recognised as an integrative marker of CVD. While dietary strategies aimed at reducing CVD risk include reductions in the intake of SFA, there are currently no clear guidelines on what should replace SFA. The purpose of this review was to assess the evidence for the effects of total dietary fat and individual fatty acids (SFA, MUFA and n-6 PUFA) on vascular function, cellular microparticles and endothelial progenitor cells. Medline was systematically searched from 1966 until November 2010. A total of fifty-nine peer-reviewed publications (covering fifty-six studies), which included five epidemiological, eighteen dietary intervention and thirty-three test meal studies, were identified. The findings from the epidemiological studies were inconclusive. The limited data available from dietary intervention studies suggested a beneficial effect of low-fat diets on vascular reactivity, which was strongest when the comparator diet was high in SFA, with a modest improvement in measures of vascular reactivity when high-fat, MUFA-rich diets were compared with SFA-rich diets. There was consistent evidence from the test meal studies that high-fat meals have a detrimental effect on postprandial vascular function. However, the evidence for the comparative effects of test meals rich in MUFA or n-6 PUFA with SFA on postprandial vascular function was limited and inconclusive. The lack of studies with comparable within-study dietary fatty acid targets, a variety of different study designs and different methods for determining vascular function all confound any clear conclusions on the impact of dietary fat and individual fatty acids on vascular function.
منابع مشابه
Changes of fatty acid profiles in fillets of Cobia (Rachycentron canadum) during frozen storage
In this study changes in fatty acids profile during frozen storage at -18°C of Cobia (Rachycentron canadum), caught from the Persian Gulf (Bandar Abbas) were studied. Changes in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), EPA+DHA/C16, n-3 PUFA/n-6 PUFA (n-3/n-6) and polyunsaturated fatty acids /saturated fatty acids (PUFA/SFA) were i...
متن کاملChanges of fatty acid profiles in fillets of Cobia (Rachycentron canadum) during frozen storage
In this study changes in fatty acids profile during frozen storage at -18°C of Cobia (Rachycentron canadum), caught from the Persian Gulf (Bandar Abbas) were studied. Changes in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), EPA+DHA/C16, n-3 PUFA/n-6 PUFA (n-3/n-6) and polyunsaturated fatty acids /saturated fatty acids (PUFA/SFA) were i...
متن کاملComparisons of Breast Milk Fatty Acid Profiles in Overweight and Obese Women
Background and Objectives: Breast milk composition is affected by several factors such as maternal diet and body mass index. Milk fats include a major calorie content of the milk, which changes dramatically throughout the lactation. The aim of the present study was to assess breast milk fatty acid profile in overweight and obese mothers and its correlations with maternal body mass index. Mater...
متن کاملRefined oil production from patin catfish (Pangasianodon hypophthalmus) by-products
In this study, oil was extracted from the liver and visceral fat of Patin (Pangasianodon hypophthalmus) and refined. The yield of oil after refining was 49.98%. The major yield loss (34.20%) happened during the degumming procedure. Fatty acids found in the crude and refined oil were C12:0, C14:0, C14:1, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C18:4, C20:0, C20:1, C20:4, C20:5, and C22:6. The ...
متن کاملMetabolic Effects of Polyunsaturated Fatty Acids in Chickens: A Review
Chicken has been used as a suitable model for lipid metabolism studies, because dietary modifications especially dietary fat type can change chicken body composition. Fats act as a condense source of energy and certain fatty acids such as polyunsaturated fatty acids (PUFAs) are required for both animal and human health. The n-3 PUFAs, especially, eicosapentaenoic acid (EPA) and docosahexaenoic ...
متن کامل